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ABSTRACT

In this paper, we propose a stochastic search algorithm for solving general optimization
problems with little structure. The algorithm iteratively finds high quality solutions by
randomly sampling candidate solutions from a parameterized distribution model over the
solution space. The basic idea is to convert the original (possibly non-differentiable) prob-
lem into a differentiable optimization problem on the parameter space of the parameterized
sampling distribution, and then use a direct gradient search method to find improved sam-
pling distributions. Thus, the algorithm combines the robustness feature of stochastic
search from considering a population of candidate solutions with the relative fast conver-
gence speed of classical gradient methods by exploiting local differentiable structures. We
analyze the convergence and converge rate properties of the proposed algorithm, and carry
out numerical study to illustrate its performance.

1. Introduction

We consider global optimization problems over real vector-valued domains. These opti-
mization problems arise in many areas of importance and can be extremely difficult to
solve due to the presence of multiple local optimal solutions and the lack of structural
properties such as differentiability and convexity. In such a general setting, there is little
problem-specific knowledge that can be exploited in searching for improved solutions, and
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it is often the case that the objective function can only be assessed through the form of
“black-box” evaluation, which returns the function value for a specified candidate solution.

An effective and promising approach for tackling such general optimization problems
is stochastic search. This refers to a collection of methods that use some sort of ran-
domized mechanism to generate a sequence of iterates, e.g., candidate solutions, and then
use the sequence of iterates to successively approximate the optimal solution. Over the
past years, various stochastic search algorithms have been proposed in literature. These
include approaches such as simulated annealing [10], genetic algorithms [7], tabu search
[6], pure adaptive search [28], and sequential Monte Carlo simulated annealing [29], which
produce a sequence of candidate solutions that are gradually improving in performance;
the nested partitions method [25], which uses a sequence of partitions of the feasible region
as intermediate constructions to find high quality solutions; and the more recent class of
model-based algorithms (see a survey by [30]), which construct a sequence of distribution
models to characterize promising regions of the solution space.

This paper focuses on model-based algorithms. These algorithms typically assume a
sampling distribution (i.e., a probabilistic model), often within a parameterized family of
distributions, over the solution space, and iteratively carry out the two interrelated steps:
(1) draw candidate solutions from the sampling distribution; (2) use the evaluations of these
candidate solutions to update the sampling distribution. The hope is that at every iteration
the sampling distribution is biased towards the more promising regions of the solution space,
and will eventually concentrate on one or more of the optimal solutions. Examples of model-
based algorithms include ant colony optimization [4, 3], annealing adaptive search (AAS)
[22], probability collectives (PCs) [27], the estimation of distribution algorithms (EDAs)
[14, 19], the cross-entropy (CE) method [23], model reference adaptive search (MRAS)
[8], and the interacting-particle algorithm [17, 18]. The various model-based algorithms
mainly differ in their ways of updating the sampling distribution. Recently, [9] showed
that the updating schemes in some model-based algorithms can be viewed under a unified
framework. The basic idea is to convert the original optimization problem into a sequence
of stochastic optimization problems with differentiable structures, so that the distribution
updating schemes in these algorithms can be equivalently transformed into the form of
stochastic approximation procedures for solving the sequence of stochastic optimization
problems.

Because model-based algorithms work with a population of candidate solutions at each
iteration, they demonstrate more robustness in exploring the solution space as compared
with their classical counterparts that work with a single candidate solution each time (e.g.,
simulated annealing). The main motivation of this paper is to integrate this robustness
feature of model-based algorithms into familiar gradient-based tools from classical differen-
tiable optimization to facilitate the search for good sampling distributions. The underlying
idea is to reformulate the original (possibly non-differentiable) optimization problem into a
differentiable optimization problem over the parameter space of the sampling distribution,
and then use a direct gradient search method on the parameter space to solve the new
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formulation. This leads to a natural algorithmic framework that combines the advantages
of both methods: the fast convergence of gradient-based methods and the global explo-
ration of stochastic search. Specifically, each iteration of our proposed method consists
of the following two steps: (1) generate candidate solutions from the current sampling
distribution; (2) update the parameters of the sampling distribution using a direct gra-
dient search method. Although there are a variety of gradient-based algorithms that are
applicable in step (2) above, in this paper we focus on a particular algorithm that uses a
quasi-Newton like procedure to update the sampling distribution parameters. Note that
since the algorithm uses only the information contained in the sampled solutions, it differs
from the quasi-Newton method in deterministic optimization, in that there is an extra
Monte Carlo sampling noise involved at each parameter updating step. We show that this
stochastic version of quasi-Newton iteration can be expressed in the form of a generalized
Robbins-Monro algorithm, and this in turn allows us to use the existing tools from stochas-
tic approximation theory to analyze the asymptotic convergence and convergence rate of
the proposed algorithm.

The rest of the paper is organized as follows. We introduce the problem setting for-
mally in Section 2. Section 3 provides a description of the proposed algorithm along with
the detailed derivation steps. In Section 4, we analyze the asymptotic properties of the
algorithm, including both convergence and convergence rate. Some preliminary numerical
study are carried out in Section 5 to illustrate the performance of the algorithm. Finally,
we conclude this paper in Section 6. All the proofs are contained in the Appendix.

2. Problem Formulation

Consider the maximization problem

x∗ ∈ arg max
x∈X

H(x), X ⊆ Rn. (1)

where the solution space X is a nonempty compact set in Rn, and H : X → R is a real-
valued function. Denote the optimal function value as H∗, i.e., there exists an x∗ such that
H(x) ≤ H∗ , H(x∗), ∀x ∈ X . Assume that H is bounded on X , i.e., ∃Hlb > −∞, Hub <
∞ s.t. Hlb < H(x) < Hub, ∀x ∈ X . We consider problems where the objective function
H(x) lacks nice structural properties such as differentiability and convexity and could have
multiple local optima.

Motivated by the idea of using a sampling distribution/probabilistic model in model-
based optimization, we let {f(x; θ)|θ ∈ Θ ⊆ Rd} be a parameterized family of probability
density functions (pdfs) on X with Θ being a parameter space. Intuitively, this collection
of pdfs can be viewed abstractly as probability models characterizing our knowledge or
belief of the promising regions of the solution space. It is easy to see that∫

H(x)f(x; θ)dx 6 H∗, ∀θ ∈ Θ.
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In this paper, we simply write
∫

with the understanding that the integrals are taken over
X . Note that the equality on the righthand side above is achieved whenever there exists
an optimal parameter under which the parameterized probability distribution will assign
all of its probability mass to a subset of the set of global optima of (1). Hence, one natural
idea to solving (1) is to transform the original problem into an expectation of the objective
function under the parameterized distribution and try to find the best parameter θ∗ within
the parameter space Θ such that the expectation under f(x, θ∗) can be made as large as
possible, i.e.,

θ∗ = arg max
θ∈Θ

∫
H(x)f(x; θ)dx. (2)

So instead of considering directly the original functionH(x) that is possibly non-differentiable
and discontinuous in x, we now consider the new objective function

∫
H(x)f(x; θ)dx that is

continuous on the parameter space and usually differentiable with respect to θ. For exam-
ple, under mild conditions the differentiation can be brought into the integration to apply
on the p.d.f. f(x; θ), which is differentiable given an appropriate choice of the distribution
family such as an exponential family of distributions.

The formulation of (2) suggests a natural integration of stochastic search methods
on the solution space X with gradient-based optimization techniques on the continuous
parameter space. Conceptually, that is to iteratively carry out the following two steps:

1. Generate candidate solutions from f(x; θ) on the solution space X .

2. Use a gradient-based method for the problem (2) to update the parameter θ.

The motivation is to speed up stochastic search with a guidance on the parameter space,
and hence combine the advantages of both methods: the fast convergence of gradient-based
methods and the global exploration of stochastic search methods. Even though problem
(2) may be non-concave and multi-modal in θ, the sampling from the entire original space
X compensates the local exploitation along the gradient on the parameter space. In fact,
our algorithm developed later will automatically adjust the magnitude of the gradient
step on the parameter space according to the global information, i.e., our belief about the
promising regions of the solution space.

For algorithmic development later, we introduce a shape function Sθ : R→ R+, where
the subscript θ signifies the possible dependence of the shape function on the parameter θ.
The function Sθ satisfies the following conditions:

(a) For every θ, Sθ(y) is nondecreasing in y and bounded from above and below for
bounded y, with the lower bound being away from zero. Moreover, for every fixed y,
Sθ(y) is continuous in θ;

(b) The set of optimal solutions {arg maxx∈X Sθ(H(x))} is a non-empty subset of {arg maxx∈X H(x)},
the set of optimal solutions of the original problem (1).
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Therefore, solving (1) is equivalent to solving the following problem

x∗ ∈ arg max
x∈X

Sθ(H(x)). (3)

The main reason of introducing the shape function Sθ is to ensure positivity of the objective
function Sθ(H(x)) under consideration, since Sθ(H(x)) will be used to form a probability
density function later. Moreover, the choice of Sθ can also be used to adjust the trade-off
between exploration and exploitation in stochastic search. One choice of such a shape
function, similar to the level/indicator function used in the CE method and MRAS, is

Sθ(H(x)) = (H(x)−Hlb)
1

1 + e−S0(H(x)−γθ)
, (4)

where S0 is a large positive constant, and γθ is the (1− ρ)-quantile

γθ , sup
l
{l : Pθ{x ∈ X : H(x) ≥ l} ≥ ρ} ,

where Pθ denotes the probability with respect to f(·; θ). Notice that 1/(1+e−S0(H(x)−γθ)) is
a continuous approximation of the indicator function I{H(x) ≥ γθ}, this shape function Sθ
essentially prunes the level sets below γθ. By varying ρ, we can adjust the percentile of elite
samples that are selected to update the next sampling distribution: the bigger ρ, the less
elite samples selected and hence more emphasis is put on exploiting the neighborhood of the
current best solutions. Sometimes the function Sθ could also be chosen to be independent
of θ, i.e., Sθ = S : R→ R+, such as the function S(y) = exp(y).

For an arbitrary but fixed θ′ ∈ Rd, define the function

L(θ; θ′) ,
∫
Sθ′(H(x))f(x; θ)dx.

According to the conditions on Sθ, it always holds that

0 < L(θ; θ′) ≤ Sθ′(H∗) ∀ θ,

and the equality is achieved if there exists an optimal parameter such that the probability
mass of the parameterized distribution is concentrated only on a subset of the set of global
optima. Following the same idea that leads to (2), solving (3) and thus (1) can be converted
to the problem of trying to find the best parameter θ∗ within the parameter space by solving
the following maximization problem:

θ∗ = arg max
θ∈Θ

L(θ; θ′). (5)

Same as problem (2), L(θ; θ′) may be nonconcave and multi-modal in θ.
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3. Gradient-Based Adaptive Stochastic Search

Following the formulation in the previous section, we propose a stochastic search algorithm
that carries out the following two steps at each iteration: let θk be the parameter obtained
at the kth iteration,

1. Generate candidate solutions from f(x; θk).

2. Update the parameter to θk+1 using a quasi Newton’s iteration for maxθ L(θ; θk).

Assuming it is easy to draw samples from f(x; θ), then the main obstacle is to find expres-
sions of the gradient and Hessian of L(θ; θk) that can be nicely estimated using the samples
from f(x; θ). To overcome this obstacle, we choose {f(x; θ)} to be an exponential family
of densities defined as below.

Definition 1. A family {f(x; θ) : θ ∈ Θ} is an exponential family of densities if it satisfies

f(x; θ) = exp{θTT (x)− φ(θ)}, φ(θ) = ln

{∫
exp(θTT (x))dx

}
. (6)

where T (x) = [T1(x), T2(x), . . . , Td(x)]T is the vector of sufficient statistics, θ = [θ1, θ2, . . . , θd]
T

is the vector of natural parameters, and Θ = {θ ∈ Rd : |φ(θ)| <∞} is the natural parame-
ter space with a nonempty interior.

Define the density function

p(x; θ) ,
Sθ(H(x))f(x; θ)∫
Sθ(H(x))f(x; θ)dx

=
Sθ(H(x))f(x; θ)

L(θ; θ)
. (7)

With f(·; θ) from an exponential family, we propose the following updating scheme for θ
in step 2 above:

θk+1 = θk + αk(Varθk [T (X)] + εI)−1 (Epk [T (X)]− Eθk [T (X)]) , (8)

where ε > 0 is a small positive number, αk > 0 is the step size, Epk denotes the expectation
with respect to p(·; θk), and Eθk and Varθk denote the expectation and variance taken with
respect to f(·; θk), respectively. The role of εI is to ensure the positive definiteness of
(Varθk [T (X)] + εI) such that it can be inverted. The term (Epk [T (X)]−Eθk [T (X)]) is an
ascent direction of L(θ; θk), which will be shown in the next section.

To implement the updating scheme (8), the term Epk [T (X)] is often not analytically
available and needs to be estimated. Suppose {x1, . . . , xNk} are independent and identically
distributed (i.i.d.) samples drawn from f(x; θk). Since

Epk [T (X)] = Eθk

[
T (X)

p(X; θk)

f(X; θk)

]
,
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we compute the weights {wik} for the samples {xik} according to

wik ∝
p(xik; θk)

f(xik; θk)
∝ Sθk(H(xik)), i = 1, . . . , Nk,

N∑
i=1

wik = 1.

Hence, Epk [T (X)] can be approximated by

Ẽpk [T (X)] =

Nk∑
i=1

wikT (xik). (9)

Some forms of the function Sθk(H(x)) have to be approximated by samples as well. For
example, if Sθk(H(x)) takes the form (4), the quantile γθk needs to be estimated by the

sample quantile. In this case, we denote the approximation by Ŝθk(H(x)), and evaluate
the normalized weights according to

ŵki ∝ Ŝθk(H(xik)), i = 1, . . . , Nk.

Then the term Epk [T (X)] is approximated by

Êpk [T (X)] =

Nk∑
i=1

ŵikT (xik). (10)

In practice, the variance term Varθk [T (X)] in (8) may not be directly available or could be
too complicated to compute analytically, so it also often needs to be estimated by samples:

V̂arθk [T (X)] =
1

Nk − 1

Nk∑
i=1

T (xik)T (xik)
T − 1

N2
k −Nk

(
Nk∑
i=1

T (xik)

)(
Nk∑
i=1

T (xik)

)T
.(11)

The expectation term Eθk [T (X)] can be evaluated analytically in most cases. For example,
if {f(·; θk)} is chosen as the Gaussian family, then Eθk [T (X)] reduces to the mean and
second moment of the Gaussian distribution.

Based on the updating scheme of θ, we propose the following algorithm for solving (1).
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Algorithm 1 Gradient-Based Adaptive Stochastic Search (GASS)

1. Initialization: choose an exponential family of densities {f(·; θ)}, and specify a small
positive constant ε, initial parameter θ0, sample size sequence {Nk}, and step size
sequence {αk}. Set k = 0.

2. Sampling: draw samples xik
iid∼ f(x; θk), i = 1, 2, . . . , Nk.

3. Estimation: compute the normalized weights ŵik according to

ŵik =
Ŝθk(H(xik))∑Nk
j=1 Ŝθk(H(xjk))

,

and then compute Êpk [T (X)] and V̂arθk [T (X)] respectively according to (10) and
(11).

4. Updating: update the parameter θ according to

θk+1 = ΠΘ̃

{
θk + αk(V̂arθk [T (X)] + εI)−1(Êpk [T (X)]− Eθk [T (X)])

}
,

where Θ̃ ⊆ Θ is a non-empty compact connected constraint set, and ΠΘ̃ denotes

the projection operator that projects an iterate back onto the set Θ̃ by choosing the
closest point in Θ̃.

5. Stopping: check if some stopping criterion is satisfied. If yes, stop and return the
current best sampled solution; else, set k := k + 1 and go back to step 2.

In the above algorithm, at the kth iteration candidate solutions are drawn from the
sampling distribution f(·; θk), and then are used to estimate the quantities in the updating
equation for θk so as to generate the next sampling distribution f(·; θk+1). To develop
an intuitive understanding of the algorithm, we consider the special setting T (X) = X,

in which case the term V̂arθk [T (X)] basically measures how widespread the candidate

solutions are. Since the magnitude of the ascent step is determined by (V̂arθk [T (X)]+εI)−1,
the algorithm takes smaller ascent steps to update θ when the candidate solutions are more
widely spread (i.e., V̂arθk [X] is larger), and takes larger ascent steps when the candidate

solutions are more concentrated (i.e., V̂arθk [X] is smaller). It means that exploitation of
the local structure is adapted to our belief about the promising regions of the solution
space: we will be more conservative in exploitation if we are uncertain about where the
promising regions are and more progressive otherwise. Note that the projection operator
at step 4 is primarily used to ensure the numerical stability of the algorithm. It prevents
the iterates of the algorithm from becoming too big in practice and ensures the sequence
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{θk} to stay bounded as the search proceeds. For simplicity, we will assume that Θ̃ is a
hyper-rectangle and takes the form Θ̃ = {θ ∈ Θ : ai ≤ θi ≤ bi} for constants ai < bi,
i = 1, . . . , d; other more general choices of Θ̃ may also be used (see, e.g., Section 4.3 of
[13]). Intuitively, such a constraint set should be chosen sufficiently large in practice so
that the limits of the recursion at step 4 without the projection are contained in its interior.

3.1 Accelerated GASS

GASS can be viewed as a stochastic approximation (SA) algorithm, which we will show in
more details in the next section. To improve the convergence rate of SA algorithms, [20]
and [24] first proposed to take the average of the θ values generated by previous iterations,
which is often referred to as Polyak (or Polyak-Ruppert) averaging. The original Polyak
averaging technique is “offline”, i.e., the averages are not fed back into the iterates of θ, and
hence the averages are not useful for guiding the stochastic search in our context. However,
there is a variation, Polyak averaging with online feedback (c.f. pp. 75 - 76 in [13]), which
is not optimal as the original Polyak averaging but also enhances the convergence rate of
SA. Using the Polyak averaging with online feedback, the parameter θ will be updated
according to

θk+1 = ΠΘ̃

{
θk + αk

(
V̂arθk [T (X)] + εI

)−1
(Êpk [T (X)]− Eθk [T (X)]) + αkc(θ̄k − θk)

}
,

(12)
where the constant c is the feedback weight, and θ̄k is the average

θ̄k =
1

k

k∑
i=1

θi,

which can be calculated recursively by

θ̄k =
k − 1

k
θ̄k−1 +

θk
k
. (13)

With this parameter updating scheme, we propose the following algorithm.

Algorithm 2 Gradient-based Adaptive Stochastic Search with Averaging
(GASS avg)

Same as Algorithm 1 except in step 4 the parameter updating follows (12) and (13).

3.2 Derivation

In this subsection, we explain the rationale behind the updating scheme (8). We first derive
the expressions of the gradient and Hessian of L(θ; θ′) as given below.
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Proposition 1. Assume that f(x; θ) is twice differentiable on Θ and that ∇θf(x; θ) and
∇2
θf(x; θ) are both bounded on X for any θ ∈ Θ. Then

∇θL(θ; θ′) = Eθ[Sθ′(H(X))∇θ ln f(X; θ)]

∇2
θL(θ; θ′) = Eθ[Sθ′(H(X))∇2

θ ln f(X; θ)]

+ Eθ[Sθ′(H(X))∇θ ln f(X; θ)∇θ ln f(X; θ)T ].

Furthermore, if f(x; θ) is in an exponential family of densities defined by (6), then the
above expressions reduce to

∇θL(θ; θ′) = Eθ[Sθ′(H(X))T (X)]− Eθ[Sθ′(H(X))]Eθ[T (X)],

∇2
θL(θ; θ′) = Eθ

[
Sθ′(H(X))(T (X)− Eθ[T (X)])(T (X)− Eθ[T (X)])T

]
− Varθ[T (X)]Eθ[Sθ′(H(X))].

Notice that if we were to use Newton’s method to update the parameter θ, the Hessian
∇2
θL(θ; θ′) is not necessarily negative semidefinite to ensure the parameter updating is

along the ascent direction of L(θ; θ′), so we need some stabilization scheme. One way
is to approximate the Hessian by the second term on the righthand side with a small
perturbation, i.e., −(Varθ[T (X)] + εI)Eθ[Sθ′(H(X))], which is always negative definite.
Thus, the parameter θ could be updated according to the following iteration

θk+1 = θk + αk ((Varθk [T (X)] + εI)Eθk [Sθk(H(X))])−1∇θL(θk; θk), (14)

= θk + αk (Varθk [T (X)] + εI)−1

(
Eθk [Sθk(H(X))T (X)]

Eθk [Sθk(H(X))]
− Eθk [T (X)]

)
,

which immediately leads to the updating scheme (8) given before.
In the updating equation (8), the term Eθk [Sθk(H(X))]−1 is absorbed into ∇θL(θk; θk),

so we obtain a scale-free term (Epk [T (X)]− Eθk [T (X)]) that is not subject to the scaling of
the function value of Sθk(H(x)). It would be nice to have such a scale-free gradient so that
we can employ other gradient-based methods more easily besides the above specific choice
of a quasi-Newton method. Towards this direction, we consider a further transformation
of the maximization problem (5) by letting

l(θ; θ′) = lnL(θ; θ′).

Since ln : R+ → R is a strictly increasing function, the maximization problem (5) is
equivalent to

θ∗ = arg max
θ∈Rd

l(θ; θ′). (15)

The gradient and the Hessian of l(θ; θ′) are given in the following proposition.
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Proposition 2. Assume that f(x; θ) is twice differentiable on Θ and that ∇θf(x; θ) and
∇2
θf(x; θ) are both bounded on X for any θ ∈ Θ. Then

∇θl(θ; θ′)|θ=θ′ = Ep(·;θ′)[∇θ ln f(X; θ′)]

∇2
θl(θ; θ

′)|θ=θ′ = Ep(·;θ′)[∇2
θ ln f(X; θ′)] + Varp(·;θ′)

[
∇θ ln f(X; θ′)

]
.

Furthermore, if f(x; θ) is in an exponential family of densities, then the above expressions
reduce to

∇θl(θ; θ′)|θ=θ′ = Ep(·;θ′)[T (X)]− Eθ′ [T (X)],

∇2
θl(θ; θ

′)|θ=θ′ = Varp(·;θ′)[T (X)]−Varθ′ [T (X)].

Similarly as before, noticing that the Hessian ∇2
θl(θ

′; θ′) is not necessarily negative def-
inite to ensure the parameter updating is along the ascent direction of l(θ; θ′), we approxi-
mate the Hessian by the slightly perturbed second term in ∇2

θl(θ
′; θ′), i.e., −(Varθ′ [T (X)]+

εI). Then by setting

θk+1 = θk + αk (Varθk [T (X)] + εI)−1∇θl(θk; θk),

we again obtain exactly the same updating equation (8) for θ. The difference from (14) is
that the gradient ∇θl(θ; θ′) is a scale-free term, and hence can be used in other gradient-
based methods with easier choices of the step size. From the algorithmic viewpoint, it is
better to consider the optimization problem (15) on l(θ; θ′) instead of the problem (5) on
L(θ; θ′), even though both have the same global optima.

Although there are many ways to determine the positive definite matrix in front of the
gradient in a quasi-Newton method, our choice of (Varθk [T (X)] + εI)−1 is not arbitrary but
based on some principle. Without considering the numerical stability and thus dropping
the term εI, the term Varθ[T (X)] = E[∇θ ln f(X; θ)(∇θ ln f(X; θ))T ] = E[−∇2

θ ln f(X; θ)]
is the Fisher information matrix, whose inverse provides a lower bound on the variance of
an unbiased estimator of the parameter θ ([21]), leading to the fact that (Varθ[T (X)])−1

is the minimum-variance step size in stochastic approximation ([16]). Moreover, from
the optimization perspective, the term (Varθ[T (X)])−1 relates the gradient search on the
parameter space with the stochastic search on the solution space, and thus adaptively
adjusts the updating of the sampling distribution to our belief about the promising regions
of the solution space. To see this more easily, let us consider T (X) = X. Then (Varθ[X])−1

is smaller (i.e., the gradient step in updating θ is smaller) when the current sampling
distribution is more flat, signifying the exploration of the solution space is still active and
we do not have a strong belief (i.e. f(·; θ)) about promising regions; (Varθ[X])−1 is larger
(i.e., the gradient step in updating θ is larger) when our belief f(·; θ) is more focused on
some promising regions.
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4. Convergence Analysis

We will analyze the convergence properties of GASS, resorting to methods and results in
stochastic approximation (e.g., [12, 13, 1]). In GASS, ∇θl(θ; θk)|θ=θk is estimated by

∇̂θl(θk; θk) = Êpk [T (X)]− Eθk [T (X)]. (16)

To simplify notations, we denote

V̂k , V̂arθk [T (X)] + εI, Vk , Varθk [T (X)] + εI.

Hence, the parameter updating iteration in GASS is

θk+1 = ΠΘ̃

{
θk + αkV̂

−1
k ∇̂θl(θk; θk)

}
, (17)

which can be rewritten in the form of a generalized Robbins-Monro algorithm

θk+1 = θk + αk[D(θk) + bk + ξk + zk], (18)

where

D(θk) = (Varθk [T (X)] + εI)−1∇θl(θk; θk),

bk = V̂ −1
k

(
Êpk [T (X)]− Ẽpk [T (X)]

)
,

ξk =
(
V̂ −1
k − V −1

k

)(
Ẽpk [T (X)]− Eθk [T (X)]

)
+ V −1

k

(
Ẽpk [T (X)]− Epk [T (X)]

)
,

and zk is the projection term satisfying αkzk = θk+1−θk−αk[D(θk)+bk+ξk], the minimum
Euclidean length vector that takes the current iterate back onto the constraint set. The
term D(θk) is the gradient vector field, bk is the bias due to the inexact evaluation of the
shape function in Êpk [T (X)] (bk is zero if the shape function can be evaluated exactly),

and ξk is the noise term due to Monte Carlo sampling in the approximations V̂arθk [T (X)]

and Ẽpk [T (X)].
For a given θ ∈ Θ̃, we define a set C(θ) as follows: if θ lies in the interior of Θ̃, let

C(θ) = {0}; if θ lies on the boundary of Θ̃, define C(θ) as the infinite convex cone generated
by the outer normals at θ of the faces on which θ lies ([13] pp. 106). The difference equation
(18) can be viewed as a noisy discretization of the constrained ordinary differential equation
(ODE)

θ̇t = D(θt) + zt, zt ∈ −C(θt), t ≥ 0, (19)

where zt is the minimum force needed to keep the trajectory of the ODE in Θ̃. Thus,
the sequence of {θk} generated by (18) can be shown to asymptotically approach the
solution set of the above ODE (19) by using the well-known ODE method. Let ‖ · ‖
denote the vector supremum norm (i.e., ‖x‖ = max{|xi|}) or the matrix max norm (i.e.,

12



‖A‖ = max{|aij |}). Let ‖ · ‖2 denote the vector 2-norm (i.e., ‖x‖ =
√
x2

1 + . . .+ x2
n) or the

matrix norm induced by the vector 2-norm (also called spectral norm for a square matrix,
i.e., ‖A‖2 =

√
λmax(A∗A), where A∗ is the conjugate transpose of A and λmax returns the

largest eigenvalue).
To proceed to the formal analysis, we introduce the following notations and assump-

tions. We denote the sequence of increasing sigma-fields generated by all the samples up
to the kth iteration by{

Fk = σ
(
{xi0}

N0
i=1, {x

i
1}
N1
i=1, . . . , {x

i
k}
Nk
i=1

)
, k = 0, 1, . . .

}
.

Define notations

Ūk :=
1

Nk

Nk∑
i=1

Ŝθk(H(xik))T (xik), V̄k :=
1

Nk

Nk∑
i=1

Ŝθk(H(xik))

Ũk :=
1

Nk

Nk∑
i=1

Sθk(H(xik))T (xik), Ṽk :=
1

Nk

Nk∑
i=1

Sθk(H(xik))

Uk := Eθk [Sθk(H(X))T (X)], Vk := Eθk [Sθk(H(X))].

Assumption 1.
(i) The step size sequence {αk} satisfies αk > 0 for all k, αk ↘ 0 as k → ∞, and∑∞
k=0 αk =∞.

(ii) The sample size Nk = N0k
ζ , where ζ > 0; moreover, {αk} and {Nk} jointly satisfies

αk√
Nk

= O(k−β) for some constant β > 1.

(iii) The function x 7→ T (x) is bounded on X .
(iv) For any x, |Ŝθk(H(x))− Sθk(H(x))| → 0 w.p.1 as Nk →∞.

In the above assumption, (i) is a typical assumption on the step size sequence in SA,
which means that αk diminishes not too fast. Assumption 1(ii) provides a guideline on
how to choose the sample size given a choice of the step size sequence, and shows that the
sample size has to increase to infinity no slower than a certain speed. For example, if we
choose αk = α0k

−α with 0 < α < 1, then it is sufficient to choose Nk = O(k2(β−α)). As-
sumption 1(iii) holds true for many exponential families used in practice. Assumption 1(iv)
is a sufficient condition to ensure the strong consistency of estimates, and is satisfied by
many choices of the shape function Sθ. For example, it is trivially satisfied if Sθ = S, since
S(H(x)) can be evaluated exactly for each x. If Sθ takes the form of (4), Assumption 1(iv)
is also satisfied, as shown in the following lemma.

Lemma 1. Suppose the shape function takes the form

Sθk(H(x)) = (H(x)−Hlb)
1

1 + eS0(H(x)−γθk )
,

13



where γθk , supl {l : Pθk{x ∈ X : H(x) ≥ l} ≥ ρ} is the unique (1−ρ)-quantile with respect

to f(·; θk). If Sθk(H(x)) is estimated by Ŝθk(H(x)) with the true quantile γθk being replaced
by the sample (1− ρ)-quantile γ̂θk = H(d(1−ρ)Nke), where dae is the smallest integer greater

than a, and H(i) is the ith order statistic of the sequence {H(xik), i = 1, . . . , Nk}. Then un-

der the condition Nk = Θ(kζ) ζ > 0, we have that for every x,
∣∣Ŝθk(H(x))−Sθk(H(x))

∣∣→
0 w.p.1 as k →∞.

The next lemma shows that the summed tail error goes to zero w.p.1.

Lemma 2. Under Assumption 1 (i)-(iii), for any T > 0,

lim
k→∞

{
sup

{n:0≤
∑n−1
i=k αi≤T}

∥∥∥∥∥
n∑
i=k

αiξi

∥∥∥∥∥
}

= 0, w.p.1.

Theorem 1 below shows that GASS generates a sequence {θk} that asymptotically
approaches the limiting solution of the ODE (19) under the regularity conditions specified
in Assumption 1.

Theorem 1. Assume that D(θt) is continuous with a unique integral curve (i.e., the ODE
(19) has a unique solution θ(t)) and Assumption 1 holds. Then the sequence {θk} generated
by (17) converges to a limit set of (19) w.p.1. Furthermore, if the limit sets of (19) are
isolated equilibrium points, then w.p.1 {θk} converges to a unique equilibrium point.

For a given distribution family, Theorem 1 shows that our algorithm will identify a
local/global optimal sampling distribution within the given family that provides the best
capability in generating an optimal solution to (1). From the viewpoint of maximizing
Eθ[H(X)], the average function value under our belief of where promising solutions are
located (i.e., the parameterized distribution f(x, θ)), the convergence of the algorithm to
an local/global optimum in the parameter space essentially gives us a local/global optimum
of our belief about the function value.

4.1 Asymptotic Normality of GASS

In this section, we study the asymptotic convergence rate of Algorithm 1 under the assump-
tion that the parameter sequence {θk} converges to a unique equilibrium point θ∗ of the
ODE (19) in the interior of Θ̃. This indicates that there exists a small open neighborhood
N (θ∗) of θ∗ such that the sequence {θk} will be contained in N (θ∗) for k sufficiently large
w.p.1. Thus, the projection operator in (17) and zk in (18) can be dropped in the analysis,
because the projected recursion will behave identically to an unconstrained algorithm in
the long run. Define L(θ) = ∇θ′ l(θ′; θ)|θ′=θ and let JL be the Jacobian of L. Under our
conditions, it immediately follows from (19) that C(θ∗) = {0} and L(θ∗) = 0. Since L is
the gradient of some underlying function F (θ), JL is the Hessian of F and Algorithm 1 is
essentially a gradient-based algorithm for maximizing F (θ). Therefore, it is reasonable to
expect that the following assumption holds:

14



Assumption 2. The Hessian matrix JL(θ) is continuous and symmetric negative definite
in the neighborhood N (θ∗) of θ∗.

We consider a standard gain sequence αk = α0/k
α for constants α0 > 0 and 0 < α < 1,

a polynomially increasing sample size Nk = N0k
ζ with N0 ≥ 1 and ζ > 0.

By dropping the projection operator in (17), we can rewrite the equation in the form:

δk+1 = δk + k−αΦkL(θk) + k−αΦk

( Ūk
V̄k
− Uk

Vk

)
,

where δk = θk − θ∗ and Φk = α0(V̂arθk(T (X)) + εI)−1. Next, by using a first order Taylor
expansion of L(θk) around the neighborhood of θ∗ and the fact that L(θ∗) = 0, we have

δk+1 = δk + k−αΦkJL(θ̃k)δk + k−αΦk

( Ūk
V̄k
− Uk

Vk

)
,

where θ̃k lies on the line segment from θk to θ∗. For a given positive constant τ > 0, the
above equation can be further written in the form of a recursion in [5]:

δk+1 = (I − k−αΓk)δk + k−(α+τ)/2ΦkWk + k−α−τ/2Tk,

where Γk = −ΦkJL(θ̃k), Wk = k(τ−α)/2
( Ũk
Ṽk
−Eθk

[ Ũk
Ṽk

∣∣Fk−1

])
, and Tk = kτ/2Φk

( Ūk
V̄k
− Ũk

Ṽk
+

Eθk
[ Ũk
Ṽk

∣∣Fk−1

]
− Uk

Vk

)
. The basic idea of the rate analysis is to show that the sequence

of amplified differences {kτ/2δk} converges in distribution to a normal random variable
with mean zero and constant covariance matrix. To this end, we show that all sufficient
conditions in Theorem 2.2 in [5] are satisfied in our setting. We begin with a strengthened
version of Assumption 1(iv).

Assumption 3.
For a given constant τ > 0 and x ∈ X , kτ/2|Ŝθk(H(x))−Sθk(H(x))| → 0 as k →∞ w.p.1.

Assumption 3 holds trivially when Sθ is a deterministic function that is independent
of θ. In addition, if sample quantiles are involved in the shape function and Sθk(H(x))
takes the form (4), then the assumption can also be justified under some additional mild
regularity conditions; cf. e.g., [9].

Let Φ = α0(Varθ∗(T (X)) + εI)−1 and Γ = −ΦJL(θ∗). The following result shows
condition (2.2.1) in Theorem 2.2 of [5].

Lemma 3. Assume Assumptions 1 and 2 hold, we have Φk → Φ and Γk → Γ as k → ∞
w.p.1. In addition, if Assumption 1(iv) is replaced with Assumption 3 and Nk = N0k

ζ with
ζ > τ/2, then Tk → 0 as k →∞ w.p.1.

In addition, the noise term Wk has the following property, which justifies condition
2.2.2 in [5].
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Lemma 4. Eθk [Wk|Fk−1] = 0. In addition, let τ be a given constant satisfying τ > α. If
Assumption 1 holds and Nk = N0k

τ−α, then there exists a positive semi-definite matrix Σ
such that limk→∞Eθk [WkW

T
k |Fk−1] = Σ w.p.1, and limk→∞E[I{‖Wk‖2 ≥ rkα}‖Wk‖2] =

0 ∀r > 0.

The following asymptotic normality results then follows directly from Theorem 2.2 in
[5].

Theorem 2. Let αk = α0/k
α for 0 < α < 1. For a given constant τ > 2α, let Nk =

N0k
τ−α). Assume the convergence of the sequence {θk} occurs to a unique equilibrium

point θ∗ w.p.1. If Assumptions 1, 2, and 3 hold, then

k
τ
2 (θk − θ∗)

dist−−−→ N(0, QMQT ),

where Q is an orthogonal matrix such that QT (−JL(θ∗))Q = Λ with Λ being a diagonal
matrix, and the (i, j)th entry of the matrixM is given byM(i,j) = (QTΦΣΦTQ)(i,j)(Λ(i,i)+
Λ(j,j))

−1.

Theorem 2 shows the asymptotic rate at which the noise caused by Monte-Carlo random
sampling in GASS will be damped out as the number of iterations k → ∞. This rate, as
indicated in the theorem, is on the order of O(1/

√
kτ ). This implies that the noise can be

damped out arbitrarily fast by using a sample size sequence {Nk} that increases sufficiently
fast as k →∞. However, we note that this rate result is stated in terms of the number of
iterations k, not the sample size Nk. Therefore, in practice, there is the need to carefully
balance the tradeoff between the choice of large values of Nk to increase the algorithms’s
asymptotic rate and the use of small values of Nk to reduce the per iteration computational
cost.

5. Numerical Experiments

We test the proposed algorithms GASS, GASS avg on some benchmark continuous opti-
mization problems selected from [8] and [9]. To fit in the maximization framework where
our algorithms are proposed, we take the negative of those objective functions that are
originally for minimization problems. The ten benchmark problems are listed as below.

(1) Dejong’s 5th function (n=2, −50 ≤ xi ≤ 50)

H1(x) = −

0.002 +
25∑
j=1

1

j +
∑2

i=1(xi − aji)6

−1

,

where aj1 = (−32,−16, 0, 16, 32,−32,−16, 0, 16, 32,−32,−16, 0, 16, 32,−32,−16, 0, 16,
32,−32,−16, 0, 16, 32) and aj2 = (−32,−32,−32,−32,−32,−16,−16,−16,−16,−16, 0,
0, 0, 0, 0, 16, 16, 16, 16, 16, 32, 32, 32, 32, 32). The global optimum is at x∗ = (−32,−32)T ,
and H∗ ≈ −0.998.
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(2) Shekel’s function (n=4, 0 ≤ xi ≤ 10 )

H2(x) =
5∑
i=1

(
(x− ai)T (x− ai) + ci

)−1
,

where a1 = (4, 4, 4, 4)T , a2 = (1, 1, 1, 1)T , a3 = (8, 8, 8, 8)T , a4 = (6, 6, 6, 6)T , a5 =
(3, 7, 3, 7)T , and c = (0.1, 0.2, 0.2, 0.4, 0.4). x∗ = (4, 4, 4, 4)T , H∗ ≈ 10.153.

(3) Powel singular function (n=50, −50 ≤ xi ≤ 50)

H3(x) = −
n−2∑
i=2

[
(xi−1 + 10xi)

2 + 5(xi+1 − xi+2)2 + (xi − 2xi+1)4 + 10(xi−1 − xi+2)4
]
−1,

where x∗ = (0, · · · , 0)T , H∗ = −1.

(4) Rosenbrock function (n=10, −10 ≤ xi ≤ 10)

H4(x) = −
n−1∑
i=1

[
100(xi+1 − x2

i )
2 + (xi − 1)2

]
− 1,

where x∗ = (1, · · · , 1)T , H∗ = −1.

(5) Griewank function (n=50, −50 ≤ xi ≤ 50)

H5(x) = − 1

4000

n∑
i=1

x2
i +

n∏
i=1

cos

(
xi√
i

)
− 1,

where x∗ = (0, · · · , 0)T , H∗ = 0.

(6) Trigonometric function (n=50, −50 ≤ xi ≤ 50)

H6(x) = −
n∑
i=1

[
8 sin2(7(xi − 0.9)2) + 6 sin2(14(xi − 0.9)2) + (xi − 0.9)2

]
− 1,

where x∗ = (0.9, · · · , 0.9)T , H∗ = −1.

(7) Rastrigin function (n=20, −5.12 ≤ xi ≤ 5.12)

H7(x) = −
n∑
i=1

(
x2
i − 10 cos(2πxi)

)
− 10n− 1,

where x∗ = (0, · · · , 0)T , H∗ = −1.
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(8) Pintér’s function (n=50, −50 ≤ xi ≤ 50)

H8(x) = −

[
n∑
i=1

ix2
i +

n∑
i=1

20i sin2(xi−1 sinxi − xi + sinxi+1)

+
n∑
i=1

i log10(1 + i(x2
i−1 − 2xi + 3xi+1 − cosxi + 1)2)

]
− 1,

where x∗ = (0, · · · , 0)T , H∗ = −1.

(9) Levy function (n=50, −50 ≤ xi ≤ 50)

H9(x) = − sin2(πy1)−
n−1∑
i=1

[
(yi − 1)2(1 + 10 sin2(πyi + 1))

]
−(yn−1)2(1+10 sin2(2πyn))−1,

where yi = 1 + (xi − 1)/4, x∗ = (1, · · · , 1)T , H∗ = −1.

(10) Weighted Sphere function (n=50, −50 ≤ xi ≤ 50)

H10(x) = −
n∑
i=1

ix2
i − 1

where x∗ = (0, · · · , 0)T , H∗ = −1.

Specifically, Dejong’s 5th (H1) and Shekel’s (H2) are low-dimensional problems with a small
number of local optima that are scattered and far from each other; Powel (H3) and Rosen-
brock (H4) are badly-scaled functions; Griewank (H5), Trigonometric (H6), and Rastrigin
(H7) are high-dimensional multimodal problems with a large number of local optima, and
the number of local optima increases exponentially with the problem dimension; Pintér
(H8) and Levy (H9) are both multimodal and badly-scaled problems; Weighted Sphere
function (H10) is a high-dimensional concave function.

We compare the performance of GASS and GASS avg with two other algorithms: the
modified version of the CE method based on stochastic approximation proposed by [9] and
the MRAS method proposed by [8]. In our comparison, we try to use the same parameter
setting in all four methods. The common parameters in all four methods are set as follows:
the quantile parameter is set to be ρ = 0.02 for low-dimensional problems H1 and H2,
and ρ = 0.05 for all the other problems; the parameterized exponential family distribution
f(x; θk) is chosen to be independent multivariate normal distribution N (µk,Σk); the initial
mean µ0 is chosen randomly according to the uniform distribution on [−30, 30]n, and the
initial covariance matrix is set to be Σ0 = 1000In×n, where n is the dimension of the
problem; the sample size at each iteration is set to be N = 1000. In addition, we observe
that the performance of the algorithm is insensitive to the initial candidate solutions if the
initial variance is large enough.
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In GASS and GASS avg, we consider the shape function of the form (4), i.e.,

Sθk(H(x)) = (H(x)−Hlb)
1

1 + e−S0(H(x)−γθk )
,

In our experiment, S0 is set to be 105, which makes Sθk(H(x)) a very close approximation
to (H(x)−Hlb)I{H(x) ≥ γθk}; the (1− ρ)-quantile γθk is estimated by the (1− ρ) sample
quantile of the function values corresponding to all the candidate solutions generated at
the kth iteration. We use the step size: αk = α0/k

α, where α0 reflects the initial step size,
and the parameter α should be between 0 and 1. We set α0 = 0.3 for the low-dimensional
problems H1 and H2 and the badly-scaled problem H4, and set α0 = 1 for the rest of
the problems; we set α = 0.05, which is chosen to be relatively small to provide a slowly
decaying step size. With the above setting of step size, we can always find a β such that the
sample size Nk = 1000 satisfies the Assumption 1(ii) under a finite number of iterations,
e.g. k < 2500 in our experiment. In GASS avg, the feedback weight is c = 0.002 for
problems H3, H4 and H8 and c = 0.1 for all other problems.

In the modified CE method, we use the gain sequence αk = 5/(k + 100)0.501, which is
found to work best in the experiments. In the implementation of MRAS method, we use a
smoothing parameter ν when updating the parameter θk of the parameterized distribution,
and set ν = 0.2 as suggested by [8]. The rest of the parameter setting for MRAS is as
follows: λ = 0.01, r = 10−4 in the shape function S(H(x)) = exp{rH(x)}. Other than
using an increasing sample size in [9] and [8], and updating quantile ρk in [8], the constant
sample size N = 1000 and a constant ρ are used in our experiments for a fair comparison
of all the methods.

GASS GASS avg modified CE MRAS

H∗ H̄∗(std err) Mε H̄∗(std err) Mε H̄∗(std err) Mε H̄∗(std err) Mε

Dejong’s 5th H1 -0.998 -0.998(4.79E-7) 100 -0.998(8.97E-7) 100 -1.02(0.014) 95 -0.9981(6.63E-4) 98
Shekel H2 10.153 9.92(0.114) 96 9.91(0.106) 95 10.153(1.09E-7) 79 9.90(0.126) 96
Powel H3 -1 -1(1.48E-6) 100 -1(1.89E-6) 100 -1(8.87E-9) 100 -1.50(0.433) 95

Rosenbrock H4 -1 -1.03(1.40E-4) 0 -1.09(0.0301) 46 -1.91(0.016) 0 -7.10(0.629) 0
Griewank H5 0 0(8.45E-15) 100 0(7.30E-15) 100 -0(3.02E-16) 100 -0.14(0.017) 57

Trigonometric H6 -1 -1(9.72E-13) 100 -1(1.08E-12) 100 -1(2.23E-18) 100 -1(4.69E-7) 100
Rastrigin H7 -1 -1.15(0.0357) 85 -1.19(0.044) 83 -1.01(0.0099) 99 -83.45(0.634) 0

Pinter H8 -1 -1.007(0.0034) 93 -1.04(0.0104) 63 -6.08(0.0254) 0 -530.4(48.64) 2
Levy H9 -1 -1(9.56E-13) 100 -1(1.29E-7) 100 -1.063(3.87E-18) 100 -1(1.42E-10) 100

Sphere H10 -1 -1(1.79E-11) 100 -1(1.42E-11) 100 -1(2.23E-18) 100 -1(9.95E-9) 100

Table 1: Comparison of GASS, GASS avg, modified CE and MRAS

In the experiments, we found the computation time of function evaluations dominates
the time of other steps, so we compare the performance of the algorithms with respect to
the total number of function evaluations, which is equal to the total number of samples.
The average performance based on 100 independent runs for each method is shown in Table
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1, where H∗ is the true optimal value of H(·); H̄∗ is the average of the function values
returned by the 100 runs of an algorithm; std err is the standard error of these 100 function
values; Mε is the number of ε-optimal solutions out of 100 runs (ε-optimal solution is the
solution such that H∗ − Ĥ∗ ≤ ε, where Ĥ∗ is the optimal function value returned by an
algorithm). We consider ε = 10−2 for problems H4, H7, H8 and ε = 10−3 for all other
problems. Fig. 1 and Fig. 2 show the average (over 100 runs) of best value of H(·) at the
current iteration versus the total number of samples generated so far.

From the results, GASS and GASS avg find all the ε-optimal solutions in 100 runs for
problems H1, H3, H5, H6, H9, and H10. Modified CE finds all the ε-optimal solutions for
problems H3, H5, H6, H9, and H10. MRAS only finds all the ε-optimal solutions for the
problems H6 and H9 and the convex problem H10. As for the convergence rate, GASS avg
always converges faster than GASS, verifying the effectiveness of averaging with online
feedback. Both GASS and GASS avg converge faster than MRAS on all the problems, and
converge faster than the modified CE method when α0 is set to be large, i.e. on problems
H3 and H5 −H10.

6. Conclusion

In this paper, we have introduced a new model-based stochastic search algorithm for solv-
ing general black-box optimization problems. The algorithm generates candidate solutions
from a parameterized sampling distribution over the feasible region, and uses a quasi-
Newton like iteration on the parameter space of the parameterized distribution to find
improved sampling distributions. Thus, the algorithm enjoys the fast convergence speed
of classical gradient search methods while retaining the robustness feature of model-based
methods. By formulating the algorithm iteration into the form of a generalized stochastic
approximation recursion, we have established the convergence and convergence rate re-
sults of the algorithm. Our numerical results indicate that the algorithm shows promising
performance as compared with some of the existing approaches.

A. Appendix

Proof. Proof of Proposition 1. Consider the gradient of L(θ; θ′) with respect to θ,

∇θL(θ; θ′) =

∫
Sθ′(H(x))∇θf(x; θ)dx

=

∫
Sθ′(H(x))f(x; θ)∇θ ln f(x; θ)dx

= Eθ[Sθ′(H(X))∇θ ln f(X; θ)], (20)

where the interchange of integral and derivative in the first equality follows from the bound-
edness assumptions on Sθ′ and ∇θf(x; θ) and the dominated convergence theorem.
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Consider the Hessian of L(θ; θ′) with respect to θ,

∇2
θL(θ; θ′) =

∫
Sθ′(H(x))∇2

θf(x; θ)dx

=

∫
Sθ′(H(x))f(x; θ)∇2

θ ln f(x; θ)dx+

∫
Sθ′(H(x))∇θ ln f(x; θ)∇θf(x; θ)Tdx

= Eθ[Sθ′(H(X))∇2
θ ln f(X; θ)] + Eθ[Sθ′(H(X))∇θ ln f(x; θ)∇θ ln f(x; θ)T ],(21)

where the last equality follows from the fact that ∇θf(x; θ) = f(x; θ)∇θ ln f(x; θ).
Furthermore, if f(x; θ) = exp{θTT (x)− φ(θ)}, we have

∇θ ln f(x; θ) = ∇θ
(
θTT (x)− ln

∫
exp(θTT (x))dx

)
= T (x)−

∫
exp(θTT (x))T (x)dx∫

exp(θTT (x))dx

= T (x)− Eθ[T (X)]. (22)

Plugging (22) into (20) yields

∇θL(θ; θ′) = Eθ[Sθ′(H(X))T (X)]− Eθ[Sθ′(H(X))]Eθ[T (X)].

Differentiating (22) with respect to θ, we obtain

∇2
θ ln f(x; θ) = −

∫
exp(θTT (x))T (x)T (x)Tdx∫

exp(θTT (x))dx

+

∫
exp(θTT (x))T (x)dx

(∫
exp(θTT (x))T (x)dx

)T(∫
exp(θTT (x))dx

)2
= −Eθ[T (X)T (X)T ] + Eθ[T (X)]Eθ[T (X)]T

= −Varθ[T (X)]. (23)

Plugging (22) and (23) into (21) yields

∇2
θL(θ; θ′) = Eθ[Sθ′(H(X))(T (X)− Eθ[T (X)])(T (X)− Eθ[T (X)])T ]

− Varθ[T (X)]Eθ[Sθ′(H(X))].

Proof. Proof of Proposition 2. Consider the gradient of l(θ; θ′) with respect to θ,

∇θl(θ; θ′)|θ=θ′ =
∇θL(θ; θ′)

L(θ; θ′)

∣∣∣∣
θ=θ′

=

∫
Sθ′(H(x))f(x; θ)∇θ ln f(x; θ)dx

L(θ; θ′)

∣∣∣∣
θ=θ′

(24)

= Ep(·;θ′)[∇θ ln f(X; θ′)].
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Differentiating (24) with respect to θ, we obtain the Hessian

∇2
θl(θ; θ

′)|θ=θ′ =

∫
Sθ′(H(x))f(x; θ)∇2

θ ln f(x; θ)dx

L(θ; θ′)
+

∫
Sθ′(H(x))∇θ ln f(x; θ)(∇θf(x; θ))Tdx

L(θ; θ′)
...

−
(
∫
Sθ′(H(x))f(x; θ)∇θ ln f(x; θ)dx)(∇θL(θ; θ′))T

L(θ; θ′)2

∣∣∣∣
θ=θ′

Using ∇θf(x; θ) = f(x; θ)∇θ ln f(x; θ) in the second term on the righthand side, the above
expression can be written as

∇2
θl(θ; θ

′)|θ=θ′ = Ep(·;θ′)[∇2
θ ln f(X; θ′)] + Ep(·;θ′)

[
∇θ′ ln f(X; θ′)(∇θ′ ln f(X; θ′))T

]
− Ep(·;θ′)

[
∇θ ln f(X; θ′)

]
Ep(·;θ′)

[
∇θ ln f(X; θ′)

]T
= Ep(·;θ′)[∇2

θ ln f(X; θ′)] + Varp(·;θ′)
[
∇θ ln f(X; θ′)

]
. (25)

Furthermore, if f(x; θ) = exp{θTT (x)− φ(θ)}, plugging (22) into (24) yields

∇θl(θ; θ′)|θ=θ′ = Ep(·;θ′)[T (X)]− Eθ′ [T (X)],

and plugging (22) and (23) into (25) yields

∇2
θl(θ; θ

′)|θ=θ′ = Varp(·;θ′)[T (X)]−Varθ′ [T (X)].

Proof. Proof of Lemma 1. Because Sθ is continuous in γθ, it is sufficient to show that
γ̂θk → γθk w.p.1 as k →∞, which can be shown in the same way as Lemma 7 in [8], except
that we need to verify the following condition in their proof:

∞∑
k=1

exp
(
−M̃Nk

)
<∞,

where M̃ is positive constant. It is easy to see that this condition is trivially satisfied in
our setting by taking Nk = N0k

ζ with ζ > 0.

Proof. Proof of Lemma 2.
Before the formal proof of Lemma 2, we first introduce a key inequality to our proof - the

matrix bounded differences inequality ([26]), which is a matrix version of the generalized
Hoeffding inequality (i.e., McDiarmid’s inequality ([15])). Let λmax(·) and λmin(·) return
the largest and smallest eigenvalue of a matrix, respectively.
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Theorem 3. (Matrix bounded differences, Corollary 7.5, [26]) Let {Xi : i = 1, 2, . . . , N} be
an independent family of random variables, and let V be a function that maps N variables
to a self-adjoint matrix of dimension d. Consider a sequence of {Ck} of fixed self-adjoint
matrices that satisfy(

V (x1, . . . , xi, . . . , xN )− V (x1, . . . , x̃i, . . . , xN )
)2 ≤ C2

i ,

where xi and x̃i range over all possible values of Xi for each index i. Compute the variance
parameter

σ2 :=

∥∥∥∥∥∑
i

C2
i

∥∥∥∥∥
2

.

Then, for all δ > 0,

P {λmax(V (x)− E[V (x)]) ≥ δ} ≤ d exp

{
−δ2

8σ2

}
,

where x = (X1, . . . , XN ).

Now we proceed to the formal proof of Lemma 2. Recall that ξk can be written as

ξk = (V̂ −1
k − V −1

k )(Ẽpk [T (X)]− Eθk [T (X)]) + V −1
k (Ẽpk [T (X)]− Epk [T (X)]). (26)

To bound the first term on the right-hand-side in (26), we notice that since V −1
k and V̂ −1

k

are both positive definite and (ε−1I−V −1
k ) and (ε−1I−V̂ −1

k ) are both positive semi-definite,
we have

‖V −1
k − V̂k

−1
‖ = ‖V −1

k (V̂k − Vk)V̂ −1
k ‖

≤ ‖V −1
k ‖‖V̂k − Vk‖‖V̂

−1
k ‖

≤ ε−2‖V̂k − Vk‖. (27)

To establish a bound on ‖V̂k − Vk‖, we use the matrix bounded differences inequality that
is introduced above. For simplicity of exposition, we drop the subscript k in the expression
below.

sup
xi,x̃i∈X

{
V̂ (x1, . . . , xi, . . . , xN )− V̂ (x1, . . . , x̃i, . . . , xN )

}2

=
1

N2
sup

xi,x̃i∈X

[T (xi)T (xi)T − T (x̃i)T (x̃i)T
]
− 1

N − 1

∑
j 6=i

(
T (xi)− T (x̃i)

)
T (xj)T ...

− 1

N − 1

∑
j 6=i

T (xj)
(
T (xi)− T (x̃i)

)T
2

≤ 1

N2
C,
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where C is a fixed positive semidefinite matrix. This last inequality is due to Assump-
tion 1(iv) that T (x) is bounded on X . Note that conditioning on Fk−1, {xik, i = 1, . . . , Nk}
are i.i.d., and Eθk [V̂k|Fk−1] = Vk. Then according to the matrix bounded differences in-
equality, for all δ > 0,

P
{
λmax(V̂k − Vk) ≥ δ |Fk−1

}
≤ d exp

(
−Nkδ

2

8‖C‖2

)
,

which also implies

P
{
−λmin(V̂k − Vk) ≥ δ |Fk−1

}
= P

{
λmax(Vk − V̂k) ≥ δ |Fk−1

}
≤ d exp

(
−Nkδ

2

8‖C‖2

)
.

Recall that for a symmetric matrix A, ‖A‖2 = max(λmax(A),−λmin(A)) and ‖A‖ ≤ ‖A‖2.
Hence,

P
{
‖V̂k − Vk‖ ≥ δ |Fk−1

}
≤ P

{
‖V̂k − Vk‖2 ≥ δ |Fk−1

}
≤ 2d exp

(
−Nkδ

2

8‖C‖2

)
.

Recall that for any nonnegative random variable X,

E[X] =

∫ ∞
0

P (X ≥ x)dx

≤ a+

∫ ∞
a

P (X ≥ x) dx.

So we have

E
[
‖V̂k − Vk‖2 |Fk−1

]
≤ a+

∫ ∞
a

P
{
‖V̂k − Vk‖ ≥

√
x |Fk

}
dx

≤ a+

∫ ∞
a

2d exp

(
−Nkx

8‖C‖2

)
dx.

Set a = 8‖C‖2 log (2d)/Nk, and we obtain

E
[
‖V̂k − Vk‖ |Fk−1

]2
≤ E

[
‖V̂k − Vk‖2 |Fk−1

]
≤ 8‖C‖2(1 + log (2d))

Nk
. (28)

To bound the second term in the right-hand-side of (26), notice that Ẽpk [Tj(X)] is
a self-normalized importance sampling estimator of Epk [Tj(X)], where Tj(X) is the jth

element in the vector T (X). Applying Theorem 9.1.10 (pp. 294, [2]), we have

E
[
|Ẽpk [Tj(X)]− Epk [Tj(X)]|2|Fk−1

]
≤ cj
Nk

, j = 1, . . . , d,
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where cj ’s are positive constants due to the boundedness of Tj(x) on X . Hence,

E
[
‖Ẽpk [T (X)]− Epk [T (X)]‖|Fk−1

]2

≤ E
[
‖Ẽpk [T (X)]− Epk [T (X)]‖2|Fk−1

]
≤

d∑
j=1

E
[
|Ẽpk [Tj(X)]− Epk [Tj(X)]|2|Fk−1

]
≤ dmaxj cj

Nk
. (29)

Putting (28) and (29) together, we obtain

E[‖ξk‖] ≤ E
[
ε−2‖V̂k − Vk‖‖Ẽpk [T (X)]− Eθk [T (X)]‖+ ‖V −1

k ‖‖Ẽpk [T (X)]− Epk [T (X)]‖
]

≤ Mε−2E
[
E
[
‖V̂k − Vk‖|Fk−1

]]
+ ε−1E

[
E
[
‖Ẽpk [T (X)]− Epk [T (X)]‖|Fk−1

]]
≤

Mε−2
√

8‖C‖2(1 + log (2d)) + ε−1
√
dmaxj cj√

Nk

,
c√
Nk

,

where the positive constant M is due to the boundedness of T (x) on X .
Therefore, for any T > 0

E

[ ∞∑
i=k

αi‖ξi‖

]
=

∞∑
i=k

αiE[‖ξi‖]

≤ c

∞∑
i=k

αi√
Ni

= c

∞∑
i=k

1

iβ

≤ c

(
1

kβ
+

∫ ∞
k

1

xβ
dx

)
= c

(
1

kβ
+

1

β − 1

1

kβ−1

)
,

where the first line follows from the monotone convergence theorem, and the third line
follows from Assumption 1(ii). For any τ > 0, we have from Markov’s inequality

P

( ∞∑
i=k

αi‖ξi‖ ≥ τ

)
≤

E [
∑∞

i=k αi‖ξi‖]
τ

≤ c

τ

(
1

kβ
+

1

β − 1

1

kβ−1

)
→ 0 as k →∞,
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where the last statement is due to β > 1. This result of convergence in probability to-
gether with the fact that the sequence {

∑∞
i=k αi‖ξi‖} is monotone implies that the sequence

{
∑∞

i=k αi‖ξi‖} converges w.p.1 as k →∞. Furthermore, since sup{n:0≤
∑n−1
i=k αi≤T}

‖
∑n

i=k αiξi‖ ≤
sup{n:0≤

∑n−1
i=k αi≤T}

∑n
i=k αi‖ξi‖ ≤

∑∞
i=k αi‖ξi‖, we conclude that {sup{n:0≤

∑n−1
i=k αi≤T}

‖
∑n

i=k αiξi‖}
converges to 0 w.p.1 as k →∞.

Proof. Proof of Theorem 1. To show our theorem, we apply Theorem 2.1 in [11]. The
condition on the step size sequence in their theorem is satisfied by our Assumption 1(i),
and condition (2.2) there is a result of Lemma 2. Thus, to establish convergence, it is
sufficient to show bk → 0 w.p.1 as k →∞. Note that

bk = V̂ −1
k

(
Êpk [T (X)]− Ẽpk [T (X)]

)
= V̂ −1

k

(
Ūk
V̄k
− Ūk

Ṽk
+

Ūk
Ṽk
− Ũk

Ṽk

)

= V̂ −1
k Ūk

( Ṽk − V̄k
V̄kṼk

)
+ V̂ −1

k

Ūk − Ũk
Ṽk

.

Hence,

‖bk‖ ≤
‖V̂ −1

k ‖‖Ūk‖
|V̄kṼk|

|Ṽk − V̄k|+
‖V̂ −1

k ‖
|Ṽk|

‖Ūk − Ũk‖

≤
‖V̂ −1

k ‖‖Ūk‖
|V̄kṼk|

1

Nk

Nk∑
i=1

|Ŝθk(H(xik))− Sθk(H(xik))|

+
‖V̂ −1

k ‖
|Ṽk|

1

Nk

Nk∑
i=1

|Ŝθk(H(xik))− Sθk(H(xik))|‖T (xik)‖.

Since T (x) is bounded, it is easy to see that ‖Ūk‖|V̄k|
is also bounded. Furthermore, note

that ‖V̂ −1
k ‖ is bounded and |Ṽk| is bounded away from zero. This together with Assump-

tion 1(iv) imply that the sequence {bk} converges to zero w.p.1.

Proof. Proof of Lemma 3. Under Assumption 1, we know that the sequence {θk}
converges w.p.1. to a limiting point θ∗. This, together with Assumption 1(iii), im-
plies that the sequence of sampling distributions {f(x; θk)} will converge point-wise in

x to a limiting distribution f(x; θ∗) w.p.1. Note that ‖V̂arθk(T (X)) − Varθ∗(T (X))‖ ≤
‖V̂arθk(T (X)) − Varθk(T (X))‖ + ‖Varθk(T (X)) − Varθ∗(T (X))‖. Clearly, the first term
converges to zero by the strong consistency of the variance estimator. On the other hand,
using the point-wise convergence of {f(·; θk)} and the dominated convergence theorem, it
is easy to see that the second term also vanishes to zero. This shows Φk → Φ w.p.1. Thus,
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the convergence of Γk to Γ is a direct consequence of the continuity assumption of JL in
the neighborhood of θ∗. Regarding Tk, we have

Tk = kτ/2Φk

( Ūk
V̄k
− Ūk

Ṽk
+

Ūk
Ṽk
− Ũk

Ṽk

)
+ kτ/2Φk

(
Eθk

[ Ũk
Ṽk

∣∣∣Fk−1

]
− Uk

Vk

)
= Tk,1 + Tk,2,

where Tk,1 = kτ/2ΦkŪk
(
Ṽk−V̄k
V̄kṼk

)
+ kτ/2Φk

Ūk−Ũk
Ṽk

and Tk,2 = kτ/2Φk

(
Eθk

[
Ũk
Ṽk

∣∣∣Fk−1

]
− Uk

Vk

)
.

Note that

‖Tk,1‖ ≤ ‖Φk‖
‖Ūk‖
|V̄kṼk|

kτ/2|Ṽk − V̄k|+ ‖Φk‖
1

|Ṽk|
kτ/2‖Ūk − Ũk‖

≤ ‖Φk‖‖Ūk‖
|V̄kṼk|

kτ/2

Nk

Nk∑
i=1

|Ŝθk(H(xik))− Sθk(H(xik))|

+
‖Φk‖
|Ṽk|

kτ/2

Nk

Nk∑
i=1

|Ŝθk(H(xik))− Sθk(H(xik))|‖T (xik)‖ (30)

Since T (x) is bounded, it is easy to see that ‖Ūk‖|V̄k|
is also bounded. Furthermore, note

that |Ṽk| is bounded away from zero. This, together with the boundedness of ‖Φk‖ and
Assumption 3, imply that the right-hand-side of (30) converges to zero w.p.1.

For term Tk,2, let Ũik and Uik be the ith components of Ũk and Uk, respectively. By

using a second order two variable Taylor expansion of
Ũik
Ṽk

around
Uik
Vk , we have

Ũik
Ṽk

=
Uik
Vk

+
1

Vk
(Ũik − Uik)−

Uik
V2
k

(Ṽk − Vk) +
Ûik
V̂3
k

(Ṽk − Vk)2 − 1

V̂2
k

(Ũik − Uik)(Ṽk − Vk),

where Ûik and V̂k are on the line segments from Ũik to Uik and from Ṽk to Vk. Taking
conditional expectations at both sides of the above equation, we have∣∣∣Eθk[ ŨikṼk

∣∣∣Fk−1

]
−

Uik
Vk

∣∣∣ ≤ Eθk[ |Ûik||V̂3
k|

(Ṽk − Vk)2
∣∣∣Fk−1

]
+ Eθk

[ 1

V̂2
k

|(Ũik − Uik)(Ṽk − Vk)|
∣∣∣Fk−1

]
≤ C1Eθk

[
(Ṽk − Vk)2

∣∣∣Fk−1

]
+ C2Eθk

[
|(Ũik − Uik)(Ṽk − Vk)|

∣∣∣Fk−1

]
(31)

for constants C1 > 0 and C2 > 0. Thus, a straightforward calculation shows that the right-
hand-side of (31) is O(N−1

k ). Consequently, we have Tk,2 → 0 w.p.1. as k →∞ by taking
Nk = N0k

ζ with ζ > τ/2. This shows Tk → 0 w.p.1. as desired.
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Proof. Proof of Lemma 4. Eθk [Wk|Fk−1] = 0 follows directly from the definition of
Wk. Again, we let Ũik and Uik be the ith components of Ũk and Uk, let Ti(x) be the ith
component of the sufficient statistic T (x), and define Σk

i,j as the (i, j)th entry of the matrix

Eθk [WkW
T
k |Fk−1]. By using a first order two variable Taylor expansion of

Ũik
Ṽk

around
Uik
Vk ,

we have
Ũik
Ṽk

=
Uik
Vk

+
1

Vk
(Ũik − Uik)−

Uik
V2
k

(Ṽk − Vk) +Rk, (32)

where Rk is a reminder term. Therefore, Σk
i,j can be expressed as

Σk
i,j =kτ−αEθk

[( Ũik
Ṽk
− Eθk

[ Ũik
Ṽk

∣∣∣Fk−1

])( Ũjk
Ṽk
− Eθk

[ Ũjk
Ṽk

∣∣∣Fk−1

])∣∣∣Fk−1

]
=kτ−α

1

V2
k

Eθk [(Ũik − Uik)(Ũ
j
k − Ujk)|Fk−1] [i]

− kτ−α
Ujk
V3
k

Eθk [(Ũik − Uik)(Ṽk − Vk)|Fk−1] [ii]

− kτ−α
Uik
V3
k

Eθk [(Ũjk − Ujk)(Ṽk − Vk)|Fk−1] [iii]

+ kτ−α
UikU

j
k

V4
k

Eθk [(Ṽk − Vk)2|Fk−1] [iv]

+ kτ−αR̄k,
where R̄k represents a higher-order term.

[i] = kτ−α
1

V2
k

(
Eθk [ŨikŨ

j
k|Fk−1]− UikU

j
k

)
= kτ−α

1

V2
k

1

Nk

(
Eθk
[
S2
θk

(H(X))Ti(X)Tj(X)
∣∣Fk−1

]
− UikU

j
k

)
= kτ−α

1

Nk

(Eθk[S2
θk

(H(X))Ti(X)Tj(X)
∣∣Fk−1

]
E2
θk

[Sθk(H(X))]
−

UikU
j
k

V2
k

)
=
kτ−α

Nk

[
Epk

[
Ti(X)Tj(X)

pk(X)

f(X; θk)

]
− Epk [Ti(X)]Epk [Tj(X)]

]
.

By using a similar argument, it can be seen that

[ii] =
kτ−α

Nk

[
Epk

[
Tj(X)

]
Epk

[
Ti(X)

pk(X)

f(X; θk)

]
− Epk [Ti(X)]Epk [Tj(X)]

]
,

[iii] =
kτ−α

Nk

[
Epk

[
Ti(X)

]
Epk

[
Tj(X)

pk(X)

f(X; θk)

]
− Epk [Ti(X)]Epk [Tj(X)]

]
,

[iv] =
kτ−α

Nk

[
Epk

[
Tj(X)

]
Epk

[
Ti(X)

]
Epk

[ pk(X)

f(X; θk)

]
− Epk [Ti(X)]Epk [Tj(X)]

]
.
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Therefore,

Σk
i,j = [i]− [ii]− [iii] + [iv] + kτ−αR̄k

=
kτ−α

Nk
Epk

[
(Ti(X)− Epk [Ti(X)])(Tj(X)− Epk [Tj(X)])

pk(X)

f(X; θk)

]
+ kτ−αR̄k

=
kτ−α

Nk
Eθk

[
(Ti(X)− Epk [Ti(X)])(Tj(X)− Epk [Tj(X)])

p2
k(X)

f2(X; θk)

]
+ kτ−αR̄k.

By taking Nk = N0k
τ−α, it can be shown that the higher-order term kτ−αR̄k is o(1). In

addition, since Sθ(y) is continuous in θ for a fixed y, the point-wise convergence of f(·; θk)
to f(·; θ∗) implies that pk(x) will also converge in a point-wise manner to a limiting distri-
bution p∗(x). Thus, the dominated convergence theorem suggests that Σk

i,j will converge
to

Σi,j = CEθ∗
[
(Ti(X)− Ep∗ [Ti(X)])(Tj(X)− Ep∗ [Tj(X)])

p2
∗(X)

f2(X; θ∗)

]
for some positive constant C. Therefore, the limiting matrix Σ is given by

Σ = Covθ∗
(

(T (X)− Ep∗ [T (X)])
p∗(X)

f(X; θ∗)

)
,

where Covθ∗(·) is the covariance matrix with respect to f(·; θ∗).
To show the last statement, we use Hölder’s inequality and write

lim
k→∞

E[I{‖Wk‖2 ≥ rkα}‖Wk‖2] ≤ lim sup
k→∞

[
P
(
‖Wk‖2 ≥ rkα

)] 1
2
[
E
[
‖Wk‖4

]] 1
2
. (33)

Note that

P
(
‖Wk‖2 ≥ rkα

)
= P

(
‖Wk‖ ≥

√
rkα/2

)
≤ E[‖Wk‖2]

rkα
by Chebyshev’s inequality

=
E
[
Eθk [‖Wk‖2|Fk−1]

]
rkα

=
E
[
tr(Σk)

]
rkα

= O(k−α)

by taking Nk = N0k
τ−α for k sufficiently large, where the last step follows because all

entries in Σk are bounded and thus convergence w.p.1. implies convergence in expectation.
On the other hand, by (32), E[‖Wk‖4] can be expressed in terms of the fourth order central
moments of the sample mean and it can be verified that E[‖Wk‖4] = O(1). This shows
that the right-hand-side of (33) is O(k−

α
2 ), which vanishes to zero as k →∞.
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Figure 1: Comparison of GASS, GASS avg, modified CE and MRAS
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Figure 2: Comparison of GASS, GASS avg, modified CE and MRAS
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